LED光源与光学特性检测

发布时间:2017/9/1 15:37:00

    光学性能检测

    1.概述

    led作为新型光电发光器件,由于它的低碳环保体积小重量轻成本低寿命长的优势,正越来越受到人们的追捧,发展势头异常迅猛,是光电所始料不及的。LED不但广泛应用作于各种照明光源,指示标记灯,而且还大批量用于LCD的背光源,大有取代传统的荧光灯管而成为LCD电视的新宠。此外,LED还可以作为许多测量仪器的光源。

    完全意义上的LED电视发展也很快,虽然它现在大多用于户外,由于他的高亮度和逼真的色彩以及动态效果,走进千家万户也只是时间问题。因此,让我们全面认识LED这个新型小伙伴,就显得十分紧迫。

    自1976年个红光LED问世以来,经过30年的发展,LED已形成各种光谱系列产品,单个LED的功率也从最初的零点零几瓦发展至几瓦乃至数十瓦。2001年白光LED研制成功,人们期待LED最终能进入照明领域,甚至进入家庭照明。白光LED的研究成果更是激动人心。

    小功率LED的发光效率已达100lm/W。特别是RGB-LED的研究结果表明,LED也与常规三基色荧光灯一样,可以获得各种不同的色温和均匀的照明环境。

    LED光源的进展和人们对它在照明领域中应用的期待,也对相应的光学检测技术有了新的要求。由于LED的光学特性与传统光源有较大差别,需要研究开发适应这种新型光源的测量方法。

    2.LED光源

    LED(Light-Emitting-Diode中文意思为发光二极管)是一种能够将电能转化为可见光的半导体,它改变了白炽灯钨丝发光与节能灯三基色粉发光的原理,而采用电场发光。据分析,LED的特点非常明显,寿命长、光效高、无辐射与低功耗。LED的光谱几乎全部集中于可见光频段,其发光效率可达80~90%。将LED与普通白炽灯、螺旋节能灯及T5三基色荧光灯进行对比,结果显示:普通白炽灯的光效为12lm/W,寿命小于2000小时,螺旋节能灯的光效为60lm/W,寿命小于8000小时,T5荧光灯则为96lm/W,寿命大约为10000小时,而直径为5毫米的白光LED为20~28lm/W,寿命可大于100000小时。有人还预测,未来的LED寿命上限将无穷大。

    大功率,指发光工率大,一般指0.5W,1W 3W 5W或更高的。光强与流明是比小功率大,但同样散热也很大,现在大功率都是单颗应用,加很大的散热片。小功率一般是0.06W左右的。插件和食人鱼等。现在LED手电一般是用小功率用的,光散不散,取决于LED的发光角度,有大角度小角度之分,小角度不散,大角度才散。

    LED的亮度是跟LED的发光角度有必然关系的,LED的角度越小它的亮度越高。 如果是5MM的LED180度角的白光的亮度只有几百MCD,如果是15度角的亮度就要去到一万多两万MCD的亮度了,亮度相差好几十倍了,如果是用于照明用的,在户外是用大功率的LED了,亮度就更高了,单个功率有1W,3W,5W,还有的是用多个大功率组合成一个大功率的LED,功率去到几百都有。

    LED的发光原理

    LED(Light Emitting Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。

    而光的波长决定光的颜色,是由形成P-N结材料决定的。

    LED是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。

    假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

    理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。

    3.LED的分类

    (1)按发光管发光颜色分

    按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。

    根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。

    (2)按发光管出光面特征分

    按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。

    由半值角大小可以估计圆形发光强度角分布情况。

    从发光强度角分布图来分有三类:

    A.高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。

    B.标准型。通常作指示灯用,其半值角为20°~45°。

    C.散射型。这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大。

    (3)按发光二极管的结构分

    按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。

    (4)按发光强度和工作电流分

    按发光强度和工作电流分有普通亮度的LED(发光强度100mcd);把发光强度在10~100mcd间的叫高亮度发光二极管。一般LED的工作电流在十几mA至几十mA,而低电流LED的工作电流在2mA以下(亮度与普通发光管相同)。

    4.LED光学特性研究

    国际照明委员会(CIE)技术委员会关于LED的技术特性的研究分为两个分部。即:视觉和颜色分部(D1)和光和辐射测量分部(D2)。白光LED的显色性和相关的计量问题正在研究,并已转发D1∶TC1-65,TC1-62这两个研究色表的目视测量和LED的显色性的文件草案。

    色指数CRI的目视实验结果。

    CIE 13.3-1995出版物中规定了CRI的计算方法,如果白光LED对CRI进行计算的结果与目视结果有矛盾,文件确定存在这一矛盾。技术的结论是:应用包括白光LED在内的显色性计算时,CIE CRI并不适用。技术委员会建议D1建立一组新的显色指数,这些显色指数不立即替代目前的CIE显色指数计算方法。新的显色指数作为CIE CRI的补充,在成功地应用组合新的显色指数后才能确定替代目前CRI的计算方法。D2成立专门的技术委员会TC 2-45研究LED的测量方法:TC 2-45文件《Mea-surement ofLEDS》正在投票中,它将会替代CIE 127出版物。

    5.LED发光效率极限值

    长期以来,半导体研究探索各种新技术以提高LED的内、外量子效率,2006年已有小功率白光LED发光效率达100lm/W的报导。为确定合理的LED发光效率期待值,需要从光度学、色度学的基础上计算LED发光效率极限值。

    1979年10月,第十届国际计量大会(CGPM)定义了新坎德拉(cd)。坎德拉(cd)为发出单色辐射频率540.0154×1012Hz(波长555nm)的光源在给定方向上的发光强度,在该方向上的辐射强度为:

    1cd=(1/683)W/sr(波长555nm);1cd=1lm/sr;1W=683lm(波长555nm)。

    如果忽略供电损耗、内量子效率、外量子效率数值,可以计算出各种光源和LED的发光效率极限值。

    人眼光谱光效率与理想等能白光的光谱功率分布不尽相同。由于人眼的光谱响应特性,理想等能白光经加权计算后,可以得到在可见光谱范围内的理想等能白光极限发光效率为182.45lm/W。

    在照明领域中,一种新型光源的诞生,其寿命、光效是重要的质量指标,但它对各种颜色的显色特性是照明光环境的另一重要质量指标。低压钠灯的2条黄色光谱线的理论发光效率可达450lm/W,实际光效超过200lm/W。但由于它的显色特性差,最终被高压钠灯、金卤灯所替代。

    考察LED这一新型光源,在牺牲一些显色性指数Ra的条件下与理想等能白光比较,白光LED的极限发光效率还会高一些,大约在200lm上下。对于一个实际应用于照明领域中的白光LED,发光效率的目标值设定在150~160lm/W是合理的。

    除了照明应用的白光LED外,各种光谱的LED的发光效率也可根据数据进行估算。红(643nm)、绿(535nm)、蓝(460nm)的LED作为三基色,其极限发光效率值也可根据数据进行估算。

    6.LED与传统光源的比较

    LED与传统光源的比较有以下特点:

    (1)LED体积小,有各种不同的外形尺寸,适用于不同应用场所。

    (2)LED具有多种颜色,紫外、紫色、绿色、黄色、红色到红外,白光LED光谱。

    (3)LED光学参数与温度有关;(4)LED光学参数与观察角度有关;(5)LED有各种不同的配光曲线,而且没有确定的光轴。

    LED的上述特性,给LED光学特性的测量带来很多问题。

    7.LED光学特性的测量

    LED的光学特性检测应从下面几个特性来考虑:

    (1)发光强度(cd)

    光通量是说明某一光源向四周空间发射出的总光能量。不同光源发出的光通量在空间的分布是不同的。发光强度的单位为坎德拉,符号为cd,它表示光源在某单位球面度立体角(该物体表面对点光源形成的角)内发射出的光通量。1cd = 1lm/1sr(sr:立体角的球面度单位)。

    LED的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光强度小,所以发光强度常用烛光(坎德拉,mcd)作单位。

    由于LED的结构特点,为提高其发光效率,在其底部配装反射器,实际上它本身就是一个灯具。各个区域发出的光线有不同的聚焦点,它并不是一个点光源。因此,在评价LED发光强度时,光度学中的距离平方反比定律不适用。CIE127出版物中规定了两种目前国际公认的测量条件。

    应用上述两种测量条件的测量结果能进行国际间的对比。A和B测量条件并不严格按照发光强度的定义进行,因此被称为“平均发光强度”(ALI)。

    关于测量探测器的修正:由于测量探测器的配匹误差将造成“平均发光强度”(ALI)的测量误差,配匹误差对红、蓝LED的测量结果影响更为严重,采用光谱修正方法可以提高测量。

    对LED发光强度测量仪器的要求:

    A.测量立体角要正确dΩ=0.001sr(A条件)dΩ=0.01sr(B条件)。

    B.测量机械轴正确;C.有效的防杂散光设计;D.精密的V(λ)光探测器;E.提供V(λ)光探测器光谱数据,便于修正测量值;F.配备高稳定性的供电电源。

    (2)总光通量(lm)

    由于人眼对不同波长的电磁波具有不同的灵敏度,我们不能直接用光源的辐射功率或辐射通量来衡量光能量,必须采用以人眼对光的感觉量为基准的单位----光通量来衡量。光通量用符号Φ表示,单位为流明(lm)。

    LED光通量的测量,应用分布式光度计可对LED总光通量进行测量(探测器光谱响应曲线已修正的条件下)。这是LED总光通量的测量方法,但测试仪器昂贵,工业中常用积分球进行测量。

    A.积分球的尺寸尽可能大,可减少挡屏吸收及异物误差;B.镀层表面反射比越大,球内表面的响应率差异越少。目前在LED测试中,镀层表面反射比甚至大于98%。

    C.注意被测LED的安装位置,应将发射的光线对准积分球内表面响应均匀的区域;D.应用辅助光源减少挡屏吸收及异物误差。

    (3)光谱特性、色品坐标、主波长测量

    光谱特性、色品坐标、主波长的测量,根据国际照明委员会(CIE)三次LED国际会议的技术交流和相关国际对比结果,现建议如下:

    A.国家计量部门应该采用双单色仪测量系统;B.单色仪测量系统可满足工业部门应用;C.1nm和5nm光谱测量带宽的色度测试结果比较接近,可采用5nm带宽测量;D.主波长的对比测量差别很小;E.CCD测量仪器相对误差较大。

    (4)发光强度的空间分布和总光通量

    (5)亮度(cd/m2)

    亮度是表示眼睛从某一方向所看到物体发射光的强度。单位为坎德拉/平方米[cd/m2],符号为L,表明发光体在特定方向单位立体角单位面积内的光通量,它等于1平方米表面上发出1坎德拉的发光强度。

    (6)色温(Co1or Temperature)

    当光源所发出的光的颜色与黑体在某一温度下辐射的颜色相同时,黑体的温度就称为该光源的色温,用温度K表示。当光源所发出的光的颜色与黑体在某一温度下辐射的颜色接近时,黑体的温度就称为该光源的相关色温。