矢量信号发生器的原理
发布时间:2022-08-09 09:56 矢量信号发生器是为不断满足通信技术发展的数字化需求而出现的新型信号发生器,它将通信中的数字调制技术引入信号发生器技术领域,为通信设备的测试提供了必要的条件。
最早矢量信号发生器出现于20世纪80年代,采用中频矢量调制方式结合射频下变频方式产生矢量调制信号。
频率合成单元产生连续可变的微波本振信号和一个频率固定的中频信号。中频信号和基带信号进入矢量调制器产生载波频率固定的中频矢量调制信号(载波频率就是点频信号的频率),此信号和连续可变的微波本振信号进行混频,产生连续可变的射频信号。射频信号含有和中频矢量调制信号相同的基带信息。射频信号再由信号调理单元进行信号调理和调制滤波,然后被送到输出端口输出。
点频矢量调制方案由于其调制方案简单易行而获得了各大仪器公司的青睐,早期的矢量信号发生器都是基于此方案设计的,甚至直到现在仍然有不少产品采用这种方案。
随着半导体技术的发展,宽带矢量调制器设计技术日益成熟,出现了以宽带矢量调制器为基础的矢量信号发生器。由于宽带矢量调制器工作频率范围的限制,实际应用中还要和射频/微波变频方式相结合。
矢量信号发生器的频率合成子单元、信号调理子单元、模拟调制系统等方面和普通信号发生器是相同的。矢量信号发生器和普通信号发生器的不同之处在于矢量调制单元和基带信号发生单元。
1、矢量调制单元
所谓数字调制就是将需要传送的信息进行数字量化,转换成一串二进制代码,然后利用载波的某些幅度值或相位值分别代表这些代码来传送信息。
和模拟调制一样,数字调制也有三种基本方式,即调幅、调相和调频。极坐标图中的不同调制形式如图1-3所示,幅度是到圆心的距离,而相位是倾角。幅度调制只改变信号的幅度。角度调制只改变信号的相位。幅度调制和角度调制可以同时发生。
在数字调制中,经常用参数I和Q来描述,也就是其极坐标图的直角坐标表示。在极坐标系中,定义I轴沿0°相位方向,Q轴则旋转90°。信号在I轴的投影就是它的I分量,在Q轴的投影就是Q分量。
I信号、Q信号、载波信号的合成是通过矢量调制器实现的。一个矢量调制器通常包含四个功能单元:本振90°移相功分单元将输入的射频信号转换成正交的两路射频信号;两个混频器单元将基带同相信号和正交信号分别和对应的射频信号相乘;功率合成单元将相乘后的两路信号求和并输出。一般所有输入输出端口都内部端接50Ω负载并采用差分信号驱动方式,以降低端口回波损耗和提升矢量调制器的性能。
基带信号通路和矢量调制器都不可能是理想的,针对不同的矢量调制器往往还需要设计不同的驱动电路,以提高矢量调制质量。常用补偿有驱动增益误差补偿、驱动偏置电压补偿、IQ正交误差补偿等。需要注意的是,在使用矢量信号发生器时,如果使用仪器外部的基带信号,也可以适当调整这些补偿参数抵消外部基带信号的误差,以得到更高调制质量的数字调制信号。
2、基带信号发生单元
基带信号发生单元用于产生需要的数字调制基带信号,也可以将使用者提供的波形下载到波形存储器中用于产生使用者定义的格式。基带信号发生器通常由突发脉冲处理器、数据发生器、码元发生器、有限冲击响应(FIR)滤波器、数字重取样器、DAC和重构滤波器组成。