三相异步电动机

      作电动机运行的三相异步电机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。
      与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。

    故障处理

      1、什么故障可以造成电机(电球)组启动马达传动齿轮打齿的事故?
      答:蓄电池电力不足蓄电池温度过高; 启动电机继电器不工作 ;启动马达传动齿轮与飞轮齿圈不能啮合; 启动电机进入啮合柴油机不能转动或转动无力; 启动电机不转; 启动失效; 柴油机运转后和启动电机不能分离;
      2、AVR损坏的主要原因是什么?
      答:AVR电路由整流主回路,电压检测电路,比较控制电路三个部分组成;排除原有电气元件本身质量上的原因造成损坏的可能性而言,在整块AVR电路中,主回路和比较控制电路的工作频率变动;其中主回路的整流桥和比较电路中的晶体管变动更频,其损坏比例占整块AVR损坏率的90%以上;鉴于进口发电机上的AVR属于非拆修配件,损坏了就要换新的,所以,我们主要分析造成发电机上的AVR损坏的原因,尽可能避免AVR的损坏是最重要的,只要使用适当,可以提高AVR的使用寿命。发电机电压越稳定,AVR内的变动频率越小;比较电路中的晶体管的开关动作越小,AVR损坏的几率越小;输出负载相对平稳,AVR内的变动频率越小,比较电路中的晶体管的开关动作越小,AVR损坏的几率越小;柴油机的转速越稳定,变化电流对AVR的振荡冲击越小;经常性的“游车”和超负载,三相负载相差太大是造成AVR损坏的最主要原因;选择带E、F、C燃油系统的发电机组,由于频率变动小,AVR的使用会更可靠。
      3、两台发电机组并机使用的条件是什么?用什么装置来完成并机工作?
      答:并机使用的条件是两台机瞬间的电压、频率、相位相同。俗称“三同时”。用专用并机装置来完成并机工作。一般建议采用全自动并机柜。尽量不用手动并机。因为手动并机的成功或失败取决于人为经验。笔者以20多年从事电力工作的经验斗胆放言,柴油发电机手动并机的可靠成功率等于0。决不能以市电大电源系统可用手动并机的概念来套用小电源系统,因为二者的保护等级是完全不一样的。

    铭牌参数

      三相异步电动机的额定值刻印在每台电动机的铭牌上,一般包括下列几种:
      型号
      为了适应不同用途和不同工作环境的需要,电动机制成不同的系列,每种系列用各种型号表示。例如 Y 132 M- 4
      Y →三相异步电动机,其中三相异步电动机的产品名称代号还有:YR为绕线式异步电动机;YB为防爆型异步电动机;YQ为高起动转距异步电动机。
      132→机座中心高(mm)
      M →机座长度代号
      4 →磁极数
      接法
      这是指定子三相绕组的接法。一般鼠笼式电动机的接线盒中有六根引出线,标有U1、V1 、W1、U2、V2、W2。其中:U1 U2是相绕组的两端;V1 V2是第二相绕组的两端;W1 W2是第三相绕组的两端。
      如果U1、V1 、W1分别为三相绕组的始端(头) ,则U2、V2、W2是相应的末端(尾)。这六个引出线端在接电源之前,相互间必须正确联接。联接方法有星形(Y)联接和三角形()联接两种(下图所示)。通常三相异步电动机自3kW以下者,联接成星形;自4kW以上者, 联接成三角形。
      额定功率PN
      是指电动机在制造厂所规定的额定情况下运行时,
      其输出端的机械功率,单位一般为千瓦(kW)。
      对三相异步电机,其额定功率:PN=UNINηNcosN
      式中ηN和cosN分别为额定情况下的效率和功率因数。
      额定电压UN
      是指电动机额定运行时,外加于定子绕组上的线电压,单位为伏(V)。
      一般规定电动机的工作电压不应高于或低于额定值的5%。当工作电压高于额定值时,磁通将增大,将使励磁电流大大增加,电流大于额定电流,使绕组发热。同时,由于磁通的增大,铁损耗(与磁通平方成正比)也增大,使定子铁心过热;当工作电压低于额定值时,引起输出转矩减小,转速下降,电流增加,也使绕组过热,这对电动机的运行也是不利的。
      我国生产的Y系列中、小型异步电动机,其额定功率在3kW以上的,额定电压为380 V,绕组为三角形联接。额定功率在3 kW及以下的,额定电压为380/220V,绕组为Y/联接(即电源线电压为380 V时,电动机绕组为星形联接;电源线电压为220 V时,电动机绕组为三角形联接)。
      额定电流IN
      是指电动机在额定电压和额定输出功率时,定子绕组的线电流,单位为安(A)。
      当电动机空载时,转子转速接近于旋转磁场的同步转速,两者之间相对转速很小,所以转子电流近似为零,这时定子电流几乎全为建立旋转磁场的励磁电流。当输出功率增大时,转子电流和定子电流都随着相应增大,如下图中的I1=f(P2)曲线所示。图中是一台l0kW三相异步电动机的工作特性曲线。
      额定频率fN
      我国电力网的频率为50赫兹(Hz),因此除外销产品外,国内用的异步电动机的额定频率为50赫兹。
      额定转速nN
      是指电动机在额定电压、额定频率下,输出端有额定
      功率输出时, 转子的转速,单位为转/分(r/min)。由于生产机械对转速的要求不同,需要生产不同磁极数的异步电动机,因此有不同的转速等级。最常用的是四个极的异步电动机(n0=l500 r/min)。
      额定效率ηN
      是指电动机在额定情况下运行时的效率, 是额定输出功率与额定输入功率的比值。即
      ηN=×100%=×100%
      异步电动机的额定效率ηN约为75%~92%。从下图中的η=f(P2)曲线可以看出,在额定功率的75%左右时效率。
      额定功率因数cosN
      因为电动机是电感性负载,定子相电流比相电压滞后一个角,cos就是异步电动机的功率因数。
      三相异步电动机的功率因数较低,在额定负载时约为0. 7~0. 9之间,而在轻载和空载时更低,空载时只有0. 2~0. 3。因此,必须正确选择电动机的容量, 防止"大马拉小车",并力求缩短空载的时间。上图中的cos=f(P2)曲线反映的是功率因数和输出功率之间的关系。
      绝缘等级
      它是按电动机绕组所用的绝缘材料在使用时容许的极限温度来分级的。
      所谓极限温度,是指电动机绝缘结构中最热点的容许温度。其技术数据见下表:
      绝缘等级
      A E B F H
      工作方式
      反映异步电动机的运行情况,可分为三种基本方式:连续运行、短时运行和断续运行。

    结构

      1、定子铁心 作用:电机磁路的一部分,并在其上放置定子绕组。 构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。 定子铁心槽型有以下几种: 半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。一般用于小型低压电机中。 半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。所谓成型绕组即绕组可事先经过绝缘处理后再放入槽内。 开口型槽:用以嵌放成型绕组,绝缘方法方便,主要用在高压电机中。 2、定子绕组 作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。 构造:由三个在空间互隔120°电角度、对称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。 定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。 ⑴对地绝缘:定子绕组整体与定子铁心间的绝缘。 ⑵相间绝缘:各相定子绕组间的绝缘。 ⑶匝间绝缘:每相定子绕组各线匝间的绝缘。 电动机接线盒内的接线: 电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2),.将三相绕组接成星形接法或三角形接法。凡制造和维修时均应按这个序号排列。 3、机座 作用:固定定子铁心与前后端盖以支撑转子,并起防护、散热等作用。 构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。
      1、三相异步电动机的转子铁心: 作用:作为电机磁路的一部分以及在铁心槽内放置转子绕组。 构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。一般小型异步电动机的转子铁心直接压装在转轴上,大、中型异步电动机(转子直径在300~400毫米以上)的转子铁心则借助与转子支架压在转轴上。 2、三相异步电动机的转子绕组 作用:切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而使电动机旋转。 构造:分为鼠笼式转子和绕线式转子。 ⑴鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成。若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。鼠笼转子分为:阻抗型转子、单鼠笼型转子、双鼠笼型转子、深槽式转子几种,起动转矩等特性各有不同。 ⑵绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。 特点:结构较复杂,故绕线式电动机的应用不如鼠笼式电动机广泛。但通过集流环和电刷在转子绕组回路中串入附加电阻等元件,用以改善异步电动机的起、制动性能及调速性能,故在要求一定范围内进行平滑调速的设备,如吊车、电梯、空气压缩机等上面采用。
      1、端盖:支撑作用。 2、轴承:连接转动部分与不动部分。 3、轴承端盖:保护轴承。 4、风扇:冷却电动机。

    调速方式

      变极数调速
      这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目
      的,特点如下:
      1、具有较硬的机械特性,稳定性良好;
      2、无转差损耗,效率高;
      3、接线简单、控制方便、价格低;
      4、有级调速,级差较大,不能获得平滑调速;
      5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
      该方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
      变频调速
      变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:
      1、效率高,调速过程中没有附加损耗;
      2、应用范围广,可用于笼型异步电动机;
      3、调速范围大,特性硬,精度高;
      4、技术复杂,造价高,维护检修困难。
      该方法适用于要求精度高、调速性能较好场合。
      串级调速
      串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:
      1、可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;
      2、装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;
      3、调速装置故障时可以切换至全速运行,避免停产;
      4、晶闸管串级调速功率因数偏低,谐波影响较大。
      该方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
      电阻调速
      绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下
      运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。
      定子调压调速方法
      当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。
      调压调速的主要装置是一个能提供电压变化的电源,常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为。调压调速的特点:
      1、调压调速线路简单,易实现自动控制;
      2、调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。
      3、调压调速一般适用于100KW以下的生产机械。
      电磁调速
      电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组
      成。直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。
      电磁转差离合器由电枢、磁极和励磁绕组三部分组成。电枢和后者没有机械联系,都能自由转动。电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁极的转子按同一方向旋转,但其转速恒低于电枢的转速N1,这是一种转差调速方式,变动转差离合器的直流励磁电流,便可改变离合器的输出转矩和转速。电磁调速电动机的调速特点:
      ·装置结构及控制线路简单、运行可靠、维修方便;
      1、调速平滑、无级调速;
      2、对电网无谐影响;
      3、速度失大、效率低。
      该方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。
      耦合器调速
      液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带动生产机械运转。液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。在工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速,其特点为:
      1、功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要;
      2、结构简单,工作可靠,使用及维修方便,且造价低;
      3、尺寸小,能容大;
      4、控制调节方便,容易实现自动控制。
      该方法适用于风机、水泵的调速。

    分类形式

      一、按电动机结构尺寸分类
      ①大型电动机指电动机机座中心高度大于630mm,或者16号机座及以上.或定子铁芯外径大于990mm者.称为大型电动机。
      ②中型电动机指电动机机座中心高度在355一630mm之间.或者11-15号机座.或定子铁芯外径在560~990mm之间者.称为中型电动机。
      ③小型电动机指电动机机座中心高度在80-315mm.或者10号及以下机座,或定子铁芯外径在125-560mm之间者.称为小型电动机。
      二、按电动机转速分类
      ①恒转速电动机有普通笼型、特殊笼型(深槽式、双笼式、高启动转矩式)和绕线型。
      ②调速电机就是配有有换向器的电动机。一般采用三相并励式的绕线转子电动机(转子控制电阻、转子控制励磁)。
      ③变速电动机有变极电动机、单绕组多速电动机、特殊笼型电动机和转差电动机等。
      三、按机械特性分类
      ①普通笼型异步电动机适用于小容量、转差率变化小的恒速运行的场所.如鼓风机、离心泵、车床等低启动转矩和恒负载的场合。
      ②深槽笼型适用于中等容量、启动转矩比井通笼型异步电动机稍大的场所。
      ③双笼型异步电动机适用于中、大型笼型转子电动机.启动转矩较大.但转矩稍小。适用于传送带、压缩机、粉碎机、搅拌机、往复泵等需要启动转矩较大的恒速负载上。
      ④特殊双笼型异步电动机采用高阻抗导体材料制成。特点是启动转矩大.转矩小,转差率较大.可实现转速调节。适用于冲床、切断机等设备。
      ⑤绕线转子异步电动机适用于启动转矩大、启动电流小的场所,如传送带、压缩机、压延机等设备。
      四、按电动机防护形式分类
      ①开启式电动机除必要的支承结构外,对于转动及带电部分没有专门的保护。
      ②防护式电动机内转动和带电部分有必要的机械保护.但不明显地妨碍通风。按其通风口防护结构不同。有下列三种:网罩式、防滴式、防溅式。防滴式与防溅式不同,防滴式是能防止垂直下落的固体或液体进入电动机内部,而防溅式是能防止与垂线成1000角范围内任何方向的液体或固体进入电动机内部。
      ③封闭式电动机机壳结构能够阻止壳内外空气自由交换.但并不要求完全密封。
      ④防水式电动机机壳结构能够阻止具有一定压力的水进入电动机内部。
      ⑤水密式当电动机浸没在水中时.电动机机壳的结构能够阻止水进入电动机内部。
      ⑥潜水式电动机在规定的水压下,能长期在水中运行。
      ⑦隔爆式电动机机壳的结构能阻止电动机内部的气体爆炸传递到电动机外部.而引起电动机外部的燃烧性气体的爆炸。
      五、按电动机使用环境分类
      可分为普通型、湿热型、干热型、船用型、化工型、高原型和户外型。

    故障处理

      绕组是电动机的组成部分,老化、受潮、受热、受侵蚀、异物侵入、外力的冲击都会造成对绕组的伤害,电机过载、欠电压、过电压,缺相运行也能引起绕组故障。绕组故障一般分为绕组接地、短路、开路、接线错误。如今分别说明故障现象、产生的原因及检查方法。
      绕组接地
      指绕组与铁心或与机壳绝缘破坏而造成的接地。
      1、故障现象
      机壳带电、控制线路失控、绕组短路发热,致使电动机无法正常运行。
      2、产生原因
      绕组受潮使绝缘电阻下降;电动机长期过载运行;有害气体腐蚀;金属异物侵入绕组内部损坏绝缘;重绕定子绕组时绝缘损坏碰铁心;绕组端部碰端盖机座;定、转子磨擦引起绝缘灼伤;引出线绝缘损坏与壳体相碰;过电压(如雷击)使绝缘击穿。
      3.检查方法
      ⑴观察法。通过目测绕组端部及线槽内绝缘物观察有无损伤和焦黑的痕迹,如有就是接地点。
      ⑵万用表检查法。用万用表低阻档检查,读数很小,则为接地。
      ⑶兆欧表法。根据不同的等级选用不同的兆欧表测量每组电阻的绝缘电阻,若读数为零,则表示该项绕组接地,但对电机绝缘受潮或因事故而击穿,需依据经验判定,一般说来指针在“0”处摇摆不定时,可认为其具有一定的电阻值。
      ⑷试灯法。如果试灯亮,说明绕组接地,若发现某处伴有火花或冒烟,则该处为绕组接地故障点。若灯微亮则绝缘有接地击穿。若灯不亮,但测试棒接地时也出现火花,说明绕组尚未击穿,只是严重受潮。也可用硬木在外壳的止口边缘轻敲,敲到某一处等一灭一亮时,说明电流时通时断,则该处就是接地点。
      ⑸电流穿烧法。用一台调压变压器,接上电源后,接地点很快发热,绝缘物冒烟处即为接地点。应特别注意小型电机不得超过额定电流的两倍,时间不超过半分钟;大电机为额定电流的20%-50%或逐步增大电流,到接地点刚冒烟时立即断电。
      ⑹分组淘汰法。对于接地点在铁芯心里面且烧灼比较厉害,烧损的铜线与铁芯熔在一起。采用的方法是把接地的一相绕组分成两半,依此类推,找出接地点。
      此外,还有高压试验法、磁针探索法、工频振动法等,此处不一一介绍。
      4.处理方法
      ⑴绕组受潮引起接地的应先进行烘干,当冷却到60——70℃左右时,浇上绝缘漆后再烘干。
      ⑵绕组端部绝缘损坏时,在接地处重新进行绝缘处理,涂漆,再烘干。
      ⑶绕组接地点在槽内时,应重绕绕组或更换部分绕组元件。
      应用不同的兆欧表进行测量,满足技术要求即可。
      绕组短路
      由于电动机电流过大、电源电压变动过大、单相运行、机械碰伤、制造不良等造成绝缘损坏所至,分绕组匝间短路、绕组间短路、绕组极间短路和绕组相间短路。
      1.故障现象
      离子的磁场分布不均,三相电流不平衡而使电动机运行时振动和噪声加剧,严重时电动机不能启动,而在短路线圈中产生很大的短路电流,导致线圈迅速发热而烧毁。
      2.产生原因
      电动机长期过载,使绝缘老化失去绝缘作用;嵌线时造成绝缘损坏;绕组受潮使绝缘电阻下降造成绝缘击穿;端部和层间绝缘材料没垫好或整形时损坏;端部连接线绝缘损坏;过电压或遭雷击使绝缘击穿;转子与定子绕组端部相互摩擦造成绝缘损坏;金属异物落入电动机内部和油污过多。
      3.检查方法
      ⑴外部观察法。观察接线盒、绕组端部有无烧焦,绕组过热后留下深褐色,并有臭味。
      ⑵探温检查法。空载运行20分钟(发现异常时应马上停止),用手背摸绕组各部分是否超过正常温度。
      ⑶通电实验法。用电流表测量,若某相电流过大,说明该相有短路处。
      ⑷电桥检查。测量个绕组直流电阻,一般相差不应超过5%以上,如超过,则电阻小的一相有短路故障。
      ⑸短路侦察器法。被测绕组有短路,则钢片就会产生振动。
      ⑹万用表或兆欧表法。测任意两相绕组相间的绝缘电阻,若读数极小或为零,说明该二相绕组相间有短路。
      ⑺电压降法。把三绕组串联后通入低压安全交流电,测得读数小的一组有短路故障。
      ⑻电流法。电机空载运行,先测量三相电流,在调换两相测量并对比,若不随电源调换而改变,较大电流的一相绕组有短路。
      4.短路处理方法
      ⑴短路点在端部。可用绝缘材料将短路点隔开,也可重包绝缘线,再上漆重烘干。
      ⑵短路在线槽内。将其软化后,找出短路点修复,重新放入线槽后,再上漆烘干。
      ⑶对短路线匝少于1/12的每相绕组,串联匝数时切断全部短路线,将导通部分连接,形成闭合回路,供应急使用。
      ⑷绕组短路点匝数超过1/12时,要全部拆除重绕。
      绕组断路
      由于焊接不良或使用腐蚀性焊剂,焊接后又未清除干净,就可能造成壶焊或松脱;受机械应力或碰撞时线圈短路、短路与接地故障也可使导线烧毁,在并烧的几根导线中有一根或几根导线短路时,另几根导线由于电流的增加而温度上升,引起绕组发热而断路。一般分为一相绕组端部断线、匝间短路、并联支路处断路、多根导线并烧中一根断路、转子断笼。
      1.故障现象
      电动机不能启动,三相电流不平衡,有异常噪声或振动大,温升超过允许值或冒烟。
      2.产生原因
      ⑴在检修和维护保养时碰断或制造质量问题。
      ⑵绕组各元件、极(相)组和绕组与引接线等接线头焊接不良,长期运行过热脱焊。
      ⑶受机械力和电磁场力使绕组损伤或拉断。
      ⑷匝间或相间短路及接地造成绕组严重烧焦或熔断等。
      3.检查方法
      ⑴观察法。断点大多数发生在绕组端部,看有无碰折、接头出有无脱焊。
      ⑵万用表法。利用电阻档,对“Y”型接法的将一根表棒接在“Y”形的中心点上,另一根依次接在三相绕组的首端,无穷大的一相为断点;“△”型接法的短开连接后,分别测每组绕组,无穷大的则为断路点。
      ⑶试灯法。方法同前,等不亮的一相为断路。
      ⑷兆欧表法。阻值趋向无穷大(即不为零值)的一相为断路点。
      ⑸电流表法。电机在运行时,用电流表测三相电流,若三相电流不平衡、又无短路现象,则电流较小的一相绕组有部分短断路故障。
      ⑹电桥法。当电机某一相电阻比其他两相电阻大时,说明该相绕组有部分断路故障;
      ⑺电流平衡法。对于“Y”型接法的,可将三相绕组并联后,通入低电压大电流的交流电,如果三相绕组中的电流相差大于10%时,电流小的一端为断路;对于“△”型接法的,先将定子绕组的一个接点拆开,再逐相通入低压大电流,其中电流小的一相为断路。
      ⑻断笼侦察器检查法。检查时,如果转子断笼,则毫伏表的读数应减小。
      4.断路处理方法
      ⑴断路在端部时,连接好后焊牢,包上绝缘材料,套上绝缘管,绑扎好,再烘干。
      ⑵绕组由于匝间、相间短路和接地等原因而造成绕组严重烧焦的一般应更换新绕组。
      ⑶对断路点在槽内的,属少量断点的做应急处理,采用分组淘汰法找出断点,并在绕组断部将其连接好并绝缘合格后使用。
      ⑷对笼形转子断笼的可采用焊接法、冷接法或换条法修复。
      绕组接错
      绕组接错造成不完整的旋转磁场,致使启动困难、三相电流不平衡、噪声大等症状,严重时若不及时处理会烧坏绕组。主要有下列几种情况:某极相中一只或几只线圈嵌反或头尾接错;极(相)组接反;某相绕组接反; 多路并联绕组支路接错;“△”、“Y”接法错误。
      1、故障现象
      电动机不能启动、空载电流过大或不平衡过大,温升太快或有剧烈振动并有很大的噪声、烧断保险丝等现象。
      2、产生原因
      误将“△”型接成“Y”型;维修保养时三相绕组有一相首尾接反;减压启动是抽头位置选择不合适或内部接线错误;新电机在下线时,绕组连接错误;旧电机出头判断不对。
      3.检修方法
      ⑴滚珠法。如滚珠沿定子内圆周表面旋转滚动,说明正确,否则绕组有接错现象。
      ⑵指南针法。如果绕组没有接错,则在一相绕组中,指南针经过相邻的极(相)组时,所指的极性应相反,在三相绕组中相邻的不同相的极(相)组也相反;如极性方向不变时,说明有一极(相)组反接;若指向不定,则相组内有反接的线圈。
      ⑶万用表电压法。按接线图,如果两次测量电压表均无指示,或一次有读数、一次没有读数,说明绕组有接反处。
      ⑷常见的还有干电池法、毫安表剩磁法、电动机转向法等。
      4.处理方法
      ⑴一个线圈或线圈组接反,则空载电流有较大的不平衡,应进厂返修。
      ⑵引出线错误的应正确判断首尾后重新连接。
      ⑶减压启动接错的应对照接线图或原理图,认真校对重新接线。
      ⑷新电机下线或重接新绕组后接线错误的,应送厂返修。
      ⑸定子绕组一相接反时,接反的一相电流特别大,可根据这个特点查找故障并进行维修。
      ⑹把“Y”型接成“△”型或匝数不够,则空载电流大,应及时更正。 怎样测量三相异步电动机六股引出线的相同端头用干电池和万用表判别,
      保养方法
      连续运转的三相异步电动机,日常保养内容:外观检查,风扇是否工作正常,是否有异常振动,联轴器连接是否可靠,底座固定是否紧固,轴承工作是否正常(听声音),温度是否正常(红外测温仪),定期检查电线接头和开关触点,工作电流是否正常(钳型电流表),另外绕线式电机还须检查碳刷和滑环。
      测量端头
      ⑴先判别三相绕组的各自的两个首尾端.将万用表调到电阻档进行测量,凡是同一相的线圈就相连接没有阻值,凡不是同一相的线圈就不相通,因此根据万用表可分清两个线端属于同一相绕组引出线。
      ⑵判别其中两侧线圈引出线的同名端,将指针式万用表调到量程最小的直流电流档,再将任意一相的绕组的两个线端接到表上,然后将另一相绕组的两个线端一同分别瞬时碰触一下干电池的正极和负极,在干电池与线圈接通的一瞬间如果表针摆向大于零的一边(也就是顺时针摆动),则电池正极和万用表黑色表笔为同名端,逆则反矣。

    原理

      当向三相定子绕组中通入对称的三相交流电时,就产生了一个以同步转速n1沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。由于旋转磁场以n1转速旋转,转子导体开始时是静止的,故转子导体将切割定子旋转磁场而产生感应电动势(感应电动势的方向用右手定则判定)。由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转。
      通过上述分析可以总结出电动机工作原理为:当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。
      交流三相异步电动机绕组分类
      单层绕组:
      单层绕组就是在每个定子槽内只嵌置一个线圈有效边的绕组,因而它的线圈总数只有电机总槽数的一半。单层绕组的优点是绕组线圈数少工艺比较简单;没有层间绝缘故槽的利用率提高;单层结构不会发生相间击穿故障等。缺点则是绕组产生的电磁波形不够理想,电机的铁损和噪音都较大且起动性能也稍差,故单层绕组一般只用于小容量异步电动机中。单层绕组按照其线圈的形状和端接部分排列布置的不同,可分为链式绕组、交叉链式绕组、同心式绕组和交叉式同心绕组等几种绕组形式。
      1:链式绕组链式绕组是由具有相同形状和宽度的单层线圈元件所组成,因其绕组端部各个线圈像套起的链环一样而得名。单层链式绕组应特别注意的是其线圈节距必须为奇数,否则该绕组将无法排列布置。
      2:交叉链式绕组当每极每相槽数9为大于2的奇数时链式绕组将无法排列布置,此时就需要采用具有单、双线圈的交叉式绕组。
      3:同心式绕组在同一极相组内的所有线圈围抱同一圆心。
      4:当每级每相槽数Q为大于2的偶数时则可采取交叉同心式绕组的形式。
      单层同心绕组和交叉同心式绕组的优点为绕组的绕线、嵌线较为简单,缺点则为线圈端部过长耗用导线过多。现除偶有用在小容量2极、4极电动机中以外,如今已很少采用这种绕组形式。
      双层叠式绕组
      单双层混合绕组
      星接与角接的关系
      星接改角接:原星接时线径总截面积除以1.732等于角接时的线径总截面积。
      角接改星接:原角接时线径总截面积乘以1.732等于星接时的线径总截面积。
      星接与角接本质上的区别
      星接时线电压等于相电压的1.732倍,相电流等于线电流。
      角接时相电压等于线电压,线电流等于相电流的1.732倍。
      同功率的电机,星接时,线径粗,匝数少,角接时,线径细,匝数多。
      角接时的截面积是星接时的0.58倍。(即角接时线径总截面积除以0.58等于星接时的线径总截面积。星接时线径总截面积乘以0.58等于角接时的线径总截面积)
      线径截面积计算公式:截面积S=直径的平方乘以0.785
      电机的内部连接有显极和庶极之分,显极和庶极连接是由电机的设计属性决定的,是不能更改的
      电动机空载电流计算系数
      四极、六极功率因数0.85-0.98.5
      功率因数0.85,效率0.85时系数为:0.435,乘以额定电流
      功率因数0.86,效率0.86时系数为:0.393,乘以额定电流
      功率因数0.87,效率0.87时系数为:0.353,乘以额定电流
      功率因数0.88,效率0.88时系数为:0.313,乘以额定电流
      功率因数0.89,效率0.89时系数为:0.276,乘以额定电流
      功率因数0.90,效率0.90时系数为:0.240,乘以额定电流
      功率因数0.91,效率0.91时系数为:0.205,乘以额定电流
      功率因数0.92,效率0.92时系数为:0.172,乘以额定电流
      功率因数0.93,效率0.93时系数为:0.142,乘以额定电流
      功率因数0.94,效率0.94时系数为:0.113,乘以额定电流
      功率因数0.95,效率0.95时系数为:0.086,乘以额定电流
      功率因数0.96,效率0.96时系数为:0.062,乘以额定电流
      功率因数0.97,效率0.97时系数为:0.040,乘以额定电流
      功率因数0.98,效率0.98时系数为:0.022,乘以额定电流
      功率因数0.99,效率0.99时系数为:0.008,乘以额定电流
      四极、六极、八极功率因数0.81-0.85
      功率因数0.81,效率0.81时系数为:0.468,乘以额定电流
      功率因数0.82,效率0.82时系数为:0.433,乘以额定电流
      功率因数0.83,效率0.83时系数为:0.398,乘以额定电流
      功率因数0.84,效率0.84时系数为:0.365,乘以额定电流
      功率因数0.85,效率0.85时系数为:0.332,乘以额定电流
      四极、六极、八极功率因数0.70-0.80
      功率因数0.70,效率0.70时系数为:0.728,乘以额定电流
      功率因数0.71,效率0.71时系数为:0.694,乘以额定电流
      功率因数0.72,效率0.72时系数为:0.661,乘以额定电流
      功率因数0.73,效率0.73时系数为:0.630,乘以额定电流
      功率因数0.74,效率0.74时系数为:0.595,乘以额定电流
      功率因数0.75,效率0.75时系数为:0.562,乘以额定电流
      功率因数0.76,效率0.76时系数为:0.530,乘以额定电流
      功率因数0.77,效率0.77时系数为:0.499,乘以额定电流
      功率因数0.78,效率0.78时系数为:0.468,乘以额定电流
      功率因数0.79,效率0.79时系数为:0.438,乘以额定电流
      功率因数0.80,效率0.80时系数为:0.408,乘以额定电流
      六极、八极功率因数0.75
      功率因数0.75,效率0.75时系数为:0.496,乘以额定电流
      连体半密封的电机定子铁芯拆出:用加热的方法,把定子壳反过来放下面悬空,加热定子外壳当温度达到一定温度时轻轻震一震自己就出来了。
      运行
      电动机应妥善接地,接线盒内右下方有接地螺钉,必要时也可
      利用电动机的底脚或法兰盘固定螺栓接地。
      电动机铭牌上有规定的星形联结和三角形联结,我国3kW以下电动机采用星形联结,3kW以上电动机采用三角形联结,不能接错。
      电动机一般应配有故障保护装置,如热保护装置、电动机电子保护器等,并根据电动机铭牌电流调整保护装置的整定值选择。如电动机负载较稳定,为了更好地保护电动机,可按电动机的实际工作电流来调整保护装置的整定值。电动机的实际工作电流可在电动机负载运转时,用钳形电流表直接测定。
      当电源的电压、频率与铭牌上的数值偏差超过5%时,电动机不能保证连续输出额定功率。连续工作的电动机不允许过载。
      电动机空载或负载运行不应有断续的或异常的声响或振动,轴承温度不应过高。
      字母含义
      J——异步电动机;  O——封闭;  L——铝线缠组;
      W——户外;  Z——冶金起重;  Q——高起动转轮;
      D——多速;  B——防爆;  R一绕线式;
      S——双鼠笼;  K一—高速;  H——高转差率。

    三相异步电动机相关词条